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Abstract

For every prime p > 3 and for every prime q > p3 we prove that Zq×Z3
p

is a DCI-group.

1 Introduction

Let G be a finite group and S a subset of G. The Cayley graph Cay(G,S)
is defined by having the vertex set G and g is adjacent to h if and only
if gh−1 ∈ S. The set S is called the connection set of the Cayley graph
Cay(G,S). A Cayley graph Cay(G,S) is undirected if and only if S = S−1,
where S−1 =

{
s−1 ∈ G | s ∈ S

}
. Every right multiplication via elements of G

is an automorphism of Cay(G,S), so the automorphism group of every Cay-
ley graph on G contains a regular subgroup isomorphic to G. Moreover, this
property characterises the Cayley graphs of G.

It is clear that automorphism µ of the group G induces an isomorphism
between Cay(G,S) and Cay(G,Sµ). Such an isomorphism is called a Cayley
isomorphism. A Cayley graph Cay(G,S) is said to be a CI-graph if, for each
T ⊂ G, the Cayley graphs Cay(G,S) and Cay(G,T ) are isomorphic if and only
if there is an automorphism µ of G such that Sµ = T . Furthermore, a group G
is called a DCI-group if every Cayley graph of G is a CI-graph and it is called
a CI-group if every undirected Cayley graph of G is a CI-graph.

The problem of investigating the isomorphism problem of Cayley graphs
started with Ádám’s conjecture [1], which states that every circulant graph if
a CI-graph. Using our terminology, it was conjectured that every cyclic group
is a DCI-group. This conjecture was first disproved by Elspas and Turner [8]
for directed Cayley graphs of Z8 and for undirected graphs of Cayley graphs of
Z16.

∗Research supported by the Hungarian Scientific Fund (OTKA), grant no. K84233

1



By investigating the spectrum of circulant graph Elspas and Turner [8], and
independently Djoković [6] proved that every cyclic group of order p is a CI-
group if p is a prime. Also a lot of research was devoted to the investigation of
circulant graphs. One of the most important results for our investigation is that
Zpq is a DCI-group for every pair of primes p < q. This result was first proved
by Alspach and Parsons [2] and later by Pöschel and Klin [11] using Schur rings,
and by Godsil [9]. Finally, Muzychuk [14, 15] proved that a cyclic group Zn is a
DCI-group if and only if n = k or n = 2k, where k is square-free. Furthermore,
Zn is a CI-group if and only if n is as above or n = 8, 9, 18.

It is easy to see that every subgroup of a (D)CI-group is also a (D)CI-group
so it is natural to investigate p-groups which are the Sylow p-subgroups of a
finite group. Babai and Frankl [5] proved that if G is a p-group, which is a CI-
group, then G can only be elementary abelian p-group, the quaternion group of
order 8 or one of a few cyclic groups Z4, Z8, Z9 or Z27. Muzychuk’s result about
cyclic groups shows that Z27 is not a CI-group and Z8 is not a DCI-group. They
also asked whether every elementary abelian p-group is a CI-group.

The cyclic group of order p, which is a CI-group, can also be considered as
an elementary abelian p-group of rank 1. The best general result was given by
Hirasaka and Muzychuk [10] who proved that Z4

p is a CI-group for every prime p.
For our investigation the following weaker results are also important. Dobson
[7] proved that Z3

p is a CI-group for every prime p and Alspach and Nowitz
shoved [3] that Z3

p is a CI-group with respect to Cayles color digraphs. However

Muzychuk [16] showed that an elementary abelian p-group of 2p − 1 +
(
2p−1

p

)
rank is not a CI-group.

Severe restriction on the structure of CI-groups was given by Li and Praeger
and then a more precise list of candidates for CI-groups was given by Li, Lu
and Pálfy [13].

New family of CI-groups was found by Kovács and Muzychuk [12], that is,
Zp2 × Zq is a CI-group for every prime p and q. It was also conjectured in [12],
that the direct product of CI-groups of coprime order is a CI-group.

Theorem 1. For every prime p and every prime q > p3 the group Zp3 × Zq is
a DCI-group.

Our paper is organized as follows. In Section 2 we introduce the notation
that will be used throughout this paper. In Section 3 we collect important ideas
that we will use in the proof of Theorem 1. Finally, Section 4 contains the proof
of Theorem 1.

2 Technical details

In this section we introduce some notation. Let G be a group. We use H ≤ G
to denote that H is a subgroup of G and by NG(H) and CG(H) we denote the
normalizer and the centralizer of H in G, respectively. The center of a group G
will be denoted by Z(G).
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Let us assume that the group H acts on the set Ω and let G be an arbitrary
group. Then by G ≀Ω H we denote the wreath product of G and H. Every
element g ∈ G ≀Ω H can be uniquely written as hk, where k ∈ K = GΩ and
h ∈ H. The group K = GΩ is called the base group of G ≀Ω H and the elements
of K can be treated as functions from Ω to G. If g ∈ G ≀Ω H and g = hk we
denote k by (g)b. In order to simplify the notation Ω will be omitted if it is
clear from the definition of H and we will write G ≀H.

The symmetric group on the set Ω will be denoted by Sym(Ω). Let G be a
permutation group on the set Ω. For a G-invariant partition B of the set Ω we
use GB to denote the permutation group on B induced by the action of G and
similarly, for every g ∈ G we denote by gB the action of g on the partition B.

For a group G, let Ĝ denote the subgroup of the symmetric group Sym(G)
formed by the elements of G acting by right multiplication on G. For every
Cayley graph Γ = Cay(G,S) the subgroup Ĝ of Sym(G) is contained in Aut(Γ).

Definition 1. Let G ≤ Sym(Ω) be a permutation group. Let

G(2) =

{
π ∈ Sym(Ω)

∣∣∣∣∀a, b ∈ Ω ∃ga,b ∈ G with π(a) = ga,b(a) and
π(b) = ga,b(b)

}
.

We say that G(2) is the 2-closure of the permutation group G.

Lemma 1. Let Γ be a graph. If G ≤ Aut(Γ), then G(2) ≤ Aut(Γ).

3 Basic ideas

In this section we collect some results and some important ideas that we will
use in the proof of Theorem 1.

We begin with a fundamental lemma that we will use all along this paper.

Lemma 2 (Babai [4]). Cay(G,S) is a CI-graph if and only if for every regular
subgroup G̊ of Aut(Cay(G,S)) isomorphic to G there is a µ ∈ Aut(Cay(G,S))
such that G̊µ = Ĝ.

We introduce the following definition.

Definition 2. (a) We say that a Cayley graph Cay(G,S) is a CI(2)-graph if
and only if for every regular subgroup G̊ of Aut(Cay(G,S)) isomorphic to
G there is a σ ∈ ⟨G̊, Ĝ⟩(2) such that G̊σ = Ĝ.

(b) A group G is called a DCI(2)-group if for every S ⊂ G the Cayley graph
Cay(G,S) is a CI(2)-graph.

Definition 3. Let Γ be an arbitrary graph and A,B ⊂ V (Γ) such that A∩B = ∅.
We write A ∼ B if one of the following four possibilities holds:

(a) For every a ∈ A and b ∈ B there is an edge from a to b but there is no
edge from b to a.
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(b) For every a ∈ A and b ∈ B there is an edge from b to a but there is no
edge from a to b.

(c) For every a ∈ A and b ∈ B the vertices a and b are connected with an
undirected edge.

(d) There is no edge between A and B.

We also write A � B if none of the previous four possibilities holds.

Lemma 3. Let A, B be two disjoint subsets of cardinality p of a graph. We
write A ∪ B = Zp ∪ Zp. Let us assume that Ẑp acts naturally on A ∪ B and

for a generator g̊ of the cyclic group Z̊p the action of å is defined by (a1, a2)̊g =
(a1 + b, a2 + c) for some b, c ∈ Zp.

(a) If b = c, then the action of Ẑp and Z̊p on A ∪B are the same.

(b) If A � B, then b = c.

(c) If A ∼ B, then every π ∈ Sym(A ∪ B) which fixes A and B setwise is
an automorphism of the graph defined on A ∪ B if π � A ∈ Aut(A) and
π � B ∈ Aut(B).

Proof. These statements are obvious. �

Lemma 4. Let us assume that H is a regular abelian subgroup of Sym(pn) and
let P ≥ H be a Sylow p-subgroup of Sym(pn). Then H contains Z(P ).

Proof. It is well known that the center of P is a cyclic p-group. Let z be a
generator of Z(P ). Then ⟨H, z⟩ is a transitive abelian group. Hence ⟨H, z⟩ is
regular. Since H is also regular, we have that z has to be in H. �

4 Main result

In this section we will prove that Z3
p × Zq is a DCI-group if q > p3 and p > 3.

Our technique is based on Lemma 2 so we fix a Cayley graph Γ = Cay(Z3
p×

Zq, S). Let A = Aut(Γ) and G̊ = Z̊3
p× Z̊q be a regular subgroup of A isomorphic

to Z3
p × Zq. In order to prove Theorem 1 we have to find an α ∈ A such that

G̊α = Ĝ = Ẑ3
p × Ẑq, what we will achieve in three steps.

4.1 Step 1

We may assume Ẑq and Z̊q lie in the same Sylow q-subgroup Q of Sym(p3q).

Then both Z̊3
p and Ẑ3

p are subgroups of NSym(p3q)(Q) ∩ A so we may assume

that Z̊3
p and Ẑ3

p lie in the same Sylow p-subgroup of NSym(p3q)(Q) ∩A which is
contained in a Sylow p-subgroup P of A.

The Sylow q-subgroup Q gives a partition B =
{
B1, B2, . . . , Bp3

}
of the

vertices of Γ, where |Bi| = q for every i = 1, . . . , p3. It is easy to see that B is
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invariant under the action of Ẑ3
p and Z̊3

p and hence ⟨Ĝ, G̊⟩ ≤ Sym(q) ≀ Sym(p3).

Moreover, both G̊ and Ĝ are regular so Z̊3
p and Ẑ3

p induce regular action on B
which we denote by H1 and H2, respectively. The assumption that Z̊3

p and Ẑ3
p

lie in the same Sylow p-subgroup of A implies that H1 and H2 are in the same
Sylow p-subgroup of Sym(p3), what we denote by P1.

4.2 Step 2

Let us assume that Ẑq ̸= Z̊q which is generated by p3 disjoint q-cycles. We

intend to find an element α ∈ A such that Z̊α
q = Ẑq.

We define a graph Γ0 on B such that Bi is connected to Bj if and only if

Bi � Bj . This is an undirected graph with vertex set B and both Z̊3
p and Ẑ3

p

are regular subgroups of Aut(Γ0). It follows that Γ0 is a Cayley graph of Z3
p.

Definition 4. (a) For a pair (Bi, Bj) ∈ B2 we write Bi ≡ Bj if either there
exists a path C1, C2, . . . , Cn in Γ0 such that C1 = B1, Cn = B2 or i = j.

(b) For a pair (Bi, Bj) ∈ B2 we write Bi ̸≡ Bj if Bi ≡ Bj does not hold.

(c) If both H and K are subsets of the vertices of Γ0 such that H ∩ K = ∅
and for every Bi ∈ H, Bj ∈ K we have Bi ̸≡ Bj, then we write H ̸≡ K.

Observation 1. (a) The relation ≡ defines an equivalence relation on B. The
connected components of Γ0 will be called equivalence classes.

(b) Since H1 acts transitively on B we have that the size of the equivalence
classes defined by the relation ≡ divides p3.

We can also define a colored graph Γ1 on B by coloring the edges of the
complete directed graph on p3 points. Bi is connected to Bj with the same color
as B′

i is connected to B′
j in Γ1 if and only if there exists a graph isomorphism

ϕ from Bi ∪ Bj to B′
i ∪ B′

j such that ϕ(Bi) = B′
i and ϕ(Bj) = B′

j . The graph

Γ1 is a colored Cayley graph of the elementary abelian p-group Z3
p. Moreover,

both H1 and H2 act regularly on Γ1.
We prove the following two lemmas what we will use several times in this

step.

Lemma 5. Let us assume that C ′
1, C

′
2, . . . C

′
k are the equivalence classes defined

in V (Γ0) and let Ci = ∪C ′
i ⊂ V (Γ) for every i = 1, . . . , k . Let α be a per-

mutation on the vertex set V (Γ) such that for every 1 ≤ i ≤ k the restriction
α � Ci = ηi � Ci for some ηi ∈ Aut(Γ) and αV (Γ0) is an automorphism of Γ0.
Then α is an automorphism of Γ.

Proof. Let x and y be points in V (Γ). We have to prove that x is connected to
y if and only if α(x) is connected to α(y). This holds if x and y are in the same
Ci for some 1 ≤ i ≤ k since α � Ci is defined by an automorphism of Γ on Ci.
If x ∈ Bm and y ∈ Bn, where Bm ∼ Bn and x is connected to y, then every
element of Bm is connected to every element of Bn. Since α

V (Γ0) ∈ Aut(Γ0) the
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same holds for α(Bm) and α(Bn) and hence α(x) is connected to α(y). Similar
argument shows that if x ∈ Bm and y ∈ Bn, where Bm ∼ Bn and x is not
connected to y, then α(x) is not connected to α(y). �

Lemma 6. (a) Let A and B be two disjoint subsets of cardinality q of V (Γ).
We write A = {(a, x) | x ∈ Zq)} and B = {(b, x) | x ∈ Zq}. Let us assume
that ĝ and g̊ are automorphisms of the graph Γ with ĝ(a, x) = g̊(a, x) =
(a, x+ 1), ĝ(b, x) = (b, x+ 1) and g̊(b, x) = (b, x+ d) for some d ∈ Zq for
all x ∈ Zq. Furthermore, let us assume that ŵ and ẘ are automorphisms
of the graph Γ with ŵ(A) = ẘ(A) = B and ŵ and ẘ commute with ĝ and
g̊, respectively. Then for α = ẘŵ−1 we have g̊α �B= ĝ �B.

(b) Let us assume that C = {(c, x) | x ∈ Zq} is a subset of V (Γ) with A∩B =
A∩C = ∅. We also assume that ĝ(c, x) = (c, x+1) and g̊(c, x) = (c, x+d)
for every x ∈ Zq. Let us assume that v̊ ∈ Aut(Γ) with v̊(A) = C and
we also assume that g̊ and v̊ commute. Then for β = v̊ŵ−1 we have
g̊β �B= ĝ �B.

Proof. (a) Let us assume that ŵ(a, 0) = (b, b0) and ẘ(a, 0) = (b, b′0) for some
b0, b

′
0 ∈ Zq. Using that ŵ and ĝ commute we get that ŵ(a, x) = (b, b0+x)

for every x ∈ Zq and similarly we have ẘ(a, x) = (b, b′0 + dx). Thus

α (b, x) = α (b, b0 + (x− b0)) = ẘ (a, x− b0) = (b, b′0 + (x− b0)d)

= (b, (b′0 − db0) + dx) .

It is easy to derive that α−1(b, x) =
(
b,

x−(b′0−db0)
d

)
. Using the previous

two equations we get

α−1g̊α �B (b, x) = α−1g̊ (b, (b′0 − db0) + dx) = α−1 (b, (b′0 − db0) + dx+ d)

=

(
b,
(b′0 − db0) + dx+ d− (b′0 − db0)

d

)
= (b, x+ 1).

(b) Let us assume that v̊(a, 0) = (c, c0) for some c0 ∈ Zq. Then v̊(a, x) =
(c, c0 + dx) for all x ∈ Zq Thus

β(b, x) = v̊ŵ−1 (b, b0 + (x− b0))

= v̊ (a, x− b0) = (c, c0 + (x− b0)d)

and hence β−1(c, x) = (b, x−c0+b0d
d ). Similarly to the previous case we

have

β−1g̊β (b, x) = β−1g̊ (c, c0 + (x− b0)d) = β−1 (c, c0 + (x− b0)d+ d)

=

(
b,
c0 + (x− b0)d+ d− c0 + b0d

d

)
= (b, x+ 1) .

�
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The points of the graph Γ0 and Γ1 can be identified with the elements of Z3
p

and we may assume that the action of an element r of the Sylow p-subgroup P1

is the following:
r(a, b, c) = (a+ x, b+ sa, c+ ta,b),

where sa only depends on a and ta,b depends on a and b.

Let ĝ and g̊ denote the generator of Ẑq and Z̊q, respectively. We may assume
that ĝ � B1 = g̊ � B1.

(a) Let us assume first that Γ0 is a connected graph.

Using Lemma 3 (b) we get that ĝ � Bi = g̊ � Bj if there exists a path in Γ0

from Bi to Bj . This shows that ĝ = g̊ since Γ0 is connected in this case.

(b) Let us assume that Γ0 is the empty graph.

For every Bm ∈ B there exist r̂m and r̊m such that r̂m(B1) = r̊m(B1) =
Bm.

Let α be defined as follows

α � B1 = id

α � Bm = r̊mr̂−1
m for 2 ≤ m ≤ p3.

(1)

It is easy to see that αB = id so using Lemma 5 we get that α is an
automorphism of Γ. Using Lemma 6 (a) we get that g̊α = ĝ.

(c) Let us assume that the size of the connected components of Γ0 is p.

Let C ′
1, C

′
2, . . . , C

′
p2 denote the equivalence classes defined by the relation

≡ on Γ0 and for 1 ≤ m ≤ p2 let Cm = ∪C ′
m. For C2, . . . , Cp2 we choose an

element ûm of Ẑ3
p such that ûm(C1) = Cm. We may assume that B1 ⊂ C1.

Since H2 is regular on Γ0, for every 2 ≤ m ≤ p2 there exists ům such that
ům(B1) = ûm(B1). For 2 ≤ m ≤ p2 let ũm = ůmû−1

m . Now we define the
following permutation:

α1 � C1 = id

α1 � Cm = ũm for 2 ≤ m ≤ p2.

Clearly, for 2 ≤ m ≤ p2 we have ũm(Bj) = Bj for at least one Bj ⊂ Cm.
Since H1 and H2 are in the same Sylow p-subgroup of Sym(p3) the order
of ũB

m is a power of p. We also have that Cm is the union of p elements
of B for 1 ≤ m ≤ p2 hence αB

1 = id. We also have that α1 � Cm is the
restriction of an automorphism of the graph Γ for m = 1, . . . p. Therefore
by Lemma 5 α1 is an automorphism of the graph Γ.

Finally, Lemma 6 (b) gives g̊α1 = ĝ.

(d) Let us assume that the size of the connected components of Γ0 and hence
the size of the equivalence classes is p2. Let D′

0, D
′
1, . . . , D

′
p−1 denote the

equivalence classes and let Dm = ∪D′
m for 0 ≤ m ≤ p− 1.
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Using Lemma 4 we get that H1 ∩H2 ̸= {1}. Let z be an element of order

p of H1 ∩H2 and we denote by z1 and z2 the element of Ẑ3
p and Z̊3

p such

that zB1 = zB2 = z, respectively. Then (z−i
2 zi1)

B = id for i = 1, . . . , p− 1.

Let us assume first that z1(D0) ̸= D0. We may assume that zi1(D0) = Di

for i = 0, 1, . . . , p− 1. We define α2 in the following way:

α2 � D0 = id

α2 � Di = zi2z
−i
1 for 1 ≤ i ≤ p− 1.

Since zB1 = zB2 = z we have αB
2 = id. Using Lemma 5 again we get that

α2 ∈ Aut(Γ) and Lemma 6 gives g̊α2 = ĝ.

Therefore we may assume that z1(D0) = D0. In this case the orbits of z
give a ⟨H1, H2⟩-invariant partition E = {Ea,b | a, b ∈ Zp} of B. Using that
the elements of B = V (Γ0) can be identified with elements of Z3

p we may
assume that Ea,b has the following form for every pair (a, b) ∈ Z2

p:

Ea,b = {(a, b, c) ∈ Z3
p | c ∈ Zp}.

We may also assume that D′
a = ∪b∈ZpEa,b for all a ∈ Zp.

Since H1 acts regularly on Γ0, there exists h1 ∈ H1 such that h1(E0,0) =
E0,1. Since H2 is also regular, there exists h2 ∈ H2 such that h2(E0,0) =
h1(E0,0). Since the order of h1 and h2 are p and h1(D

′
0) = h2(D

′
0) = D′

0

we have that h1(D
′
i) = h2(D

′
i) = D′

i for i = 0, . . . , p− 1.

We may assume that z, h1 and h2 act in the following way on Z3
p.

z(a, b, c) = (a, b, c+ 1)

h1(a, b, c) = (a, b+ 1, c)

h2(a, b, c) = (a, b+ sa, c+ ta,b).

The assumption that h1(E0,0) = h2(E0,0) = E0,1 gives that s0 = 1.

We claim that sa = 1 for 1 ≤ a ≤ p − 1. Since H2 is regular on Γ0 there
exists k2 ∈ H2 such that k2(0, 0, 0) = (a, 0, 0). Since h2 and k2 commute
we have that k2(0, i, 0) = (a, sai, wi) for some wi ∈ Zp. If sa ̸= 1, then
such an element cannot be in the Sylow p-subgroup P1.

Therefore h2(a, b, c) = (a, b+1, c+ta,b) for all (a, b, c) ∈ Z3
p, where ta,b ∈ Zp

only depends on a and b.

Lemma 7. Let a ̸= a′ be elements of Zp and we fix two more elements b
and b′ of Zp. Then either Ea,b ∼ Ea′,b′ or ta,b+n = ta′,b′+n for all n ∈ Zp.

Proof. For all m ∈ Zp the permutation hm
2 h−m

1 fixes Ea,b and Ea′,b′ .
Moreover,

hm
2 h−m

1 (a, b, c) = (a, b, c+
n∑

i=1

ta,b−i) and

hm
2 h−m

1 (a′, b′, c) = (a′, b′, c+

n∑
i=1

ta′,b′−i)

(2)
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One can see using Lemma 3 (b) that if
∑n

i=1 ta,b−i ̸=
∑n

i=1 ta′,b′−i for
some m ∈ Zp, then Ea,b ∼ Ea′,b′ . If

∑n
i=1 ta,b−i =

∑n
i=1 ta′,b′−i for all

m ∈ Zp, then ta,b+n = ta′,b′+n for n ∈ Zp. �

For each a ∈ Zp we define the following function from Zp to Zp:

t′a(b) := t′a,b.

Lemma 8. Let us assume that ta(b+n) = t′a(b
′+n) for all n ∈ Zp and we

denote by k2 the unique element of H2 which maps (a, b, 0) to (a′, b′, 0).
Then k2(a, b+ d, e) = (a′, b′ + d, e) for all d, e ∈ Zp.

Proof. Since k2 and z commute we have k2(a, b,m) = (a′, b′,m) for all
m ∈ Zp. We also have that k2 and h2 commute which gives k2(a, b+d, e) =
(a′, b′ + d, e) for all d, e ∈ Zp. �

Corollary 1. If the conditions of Lemma 8 hold and k1 is the unique
element of H1 such that k1(a, b, 0) = (a′, b′, 0), then k1 �Ea,b

= k2 �Ea,b
.

We define an equivalence relation on the set {D′
0, D

′
1, . . . , D

′
p−1}. We write

D′
a

.
= D′

a′ if and only if there exist b and b′ in Zp such that ta,b+n = ta′,b′+n

for all n ∈ Zp.

Now we can choose a point (a, ba, 0) in every D′
a such that if Da

.
= Da′ ,

then ta,ba+n = ta′,ba′+n for all n ∈ Zp. For every 1 ≤ a ≤ p− 1 there exist

v̂a ∈ Ẑ3
p and v̊a ∈ Z̊3

p such that v̂Ba (0, b0, 0) = v̊Ba (0, b0, 0) = (a, ba, 0) since
both H1 and H2 are regular.

Now we can define the following permutation:

α3 �D0 = id

α3 �Da = v̊av̂
−1
a for 1 ≤ a ≤ p− 1.

Lemma 9. α3 is an automorphism of Γ.

Proof. We prove that αB
3 is an automorphism of the graph Γ1. If Bi ∪Bj

is contained in D′
a for some a ∈ Zp, then α3 is defined by the restriction of

an automorphism of Γ. Therefore we only have to investigate those pairs
Bi, Bj of points which are not in the same set D′

a for any a ∈ Zp.

Let us assume that Bi ∈ Ea,b and Bj ∈ Ea′,b′ . By the definition of α3, for
every c ∈ Zp at least one Ec,d is fixed by αB

3 . Therefore αB
3 fixes every set

Ec,d since the order of αB
3 �D′

c
is a power of p for every c ∈ Zp.

Let us assume first that Da � D′
a. Lemma 7 gives that Bi is connected

to Bj if and only if α′
3(Bi) is connected to α′

3(Bj) since Ea,b ∼ Ea′,b′ .

Let us now assume that D′
a ∼ D′

a′ . We denote by the pair (̊vav̂
−1
a , v̊av̂

−1
a )

the restriction of the action of α3 to D′
a ∪D′

a′ . Since v̊a and v̂−1
a are

automorphisms of Γ the pair ((̊vav̂
−1
a )B, (̊va′ v̂−1

a′ )B) is an automorphism of

9



the induced subgraph on D′
a ∪ D′

a′ if and only (idB, (̊v−1
a v̊a′ v̂−1

a′ v̂a)
B) is.

Since both Z̊3
p and Ẑ3

p are abelian we have(
idB, (̊v−1

a v̊a′ v̂−1
a′ v̂a)

B) = (
idB, (̊va′ v̊−1

a )B(v̂av̂
−1
a′ )

B) .
Clearly, (v̂av̂

−1
a′ )B(a′, ba′ , 0) = (a, ba, 0) and (̊va′ v̊−1

a )B(a, ba, 0) = (a′, ba′ , 0).
Using Corollary 1 we get that(

idB, (̊va′ v̊−1
a )B(v̂av̂

−1
a′ )

B) = (
idB, idB

)
which is clearly an automorphism on D′

a ∪ D′
a′ . This proves that αB

3 ∈
Aut(Γ1).

If Bi ∼ Bj , then α3(Bi) ∼ α3(Bj) since αB
3 ∈ Aut(Γ1) thus pi ∈ Bi is

connected to pj ∈ Bj if and only if α3(pi) is connected to α3(pj).

If Bi � Bj , then there exists a ∈ Zp such that Bi and Bj ⊂ Da. Since
α3 is defined on Da by an automorphism of Γ we have that pi ∈ Bi is
connected to pj ∈ Bj if and only if α3(pi) is connected to α3(pj), finishing
the proof of Lemma 9. �

Finally, one can see using Lemma 6 (b) that g̊α3 = ĝ.

4.3 Step 3

Let us assume that for the generators of the cyclic groups ĝ ∈ Ẑq and

g̊ ∈ Z̊q we have g̊ = ĝ.

Since g̊ = ĝ we have that Ẑ3
p and Z̊3

p are contained in CA(ĝ). Using Sylow’s

theorem again we may assume that Ẑ3
p and Z̊3

p are in the same Sylow p-
subgroup of CA(ĝ). Using all these assumptions we prove the following
Lemma.

Lemma 10. (a) Z̊3
p × Z̊q ≤ Ẑq ≀ Sym(p3).

(b) If Z̊3
p × Z̊q ≤ Ẑq ≀ Sym(p3), then for every ů ∈ Z̊3

p we have (̊u)b = id.

Proof. (a) Z̊3
p × Z̊q ≤ Ẑq ≀ Sym(p3) since the elements of Z̊3

p and ĝ com-
mute.

(b) Let A′ = A ∩ Ẑq ≀ Sym(p3). We have already assumed that Z̊3
p and

Ẑ3
p lie in the same Sylow p-subgroup of A′, which is generated by

p3 disjoint q-cycles. Let ů be an arbitrary element of Z̊3
p. For every

(b, s) ∈ Z3
p × Zq we have ů(b, s) = (c, s + t) for some c ∈ Z3

p and

t ∈ Zq, where t only depends on ů and b since ů ∈ Ẑq ≀ Sym(p3).

The permutation group Ĝ is transitive, hence there exist û1, û2 ∈ Ẑp

such that û1(0, s) = (b, s) and û2(c, s + t) = (0, s + t). The order of
û2ůû1 is a power of p since û2, ů and û1 lie in a Sylow p-subgroup.
Therefore t = 0 and hence (̊u)b = id.

�
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Lemma 10 says that for every ů ∈ Z̊3
p we have (u)b = id. We use again the

graph Γ1 defined on B. It is clear that H1 and H2 are regular subgroups
in Aut(Γ1) and they are isomorphic to Z3

p. Since Z3
p is a DCI(2)-group [3]

we have that there exists µ ∈ ⟨H1,H2⟩(2) such that Hµ
2 = H1.

Let η = µidB be an element of the wreath product Zq ≀ Sym(p3). Clearly,

η ∈ ⟨Ĝ, G̊⟩(2) and hence η is an automorphism of Γ0, which conjugates Z̊3
p

to Ẑ3
p. Moreover, the base group part of η is the identity so η ∈ CA(ĝ).

This proves that G̊η = Ĝ, finishing the proof of Theorem 1.
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