AAL, Third homework set

You have to submit 3 of the following 4 exercises.

- 1. Let G be a finite group, $N \triangleleft G$ and p a prime. Suppose that M is a normal p-complement in G. Show that $N \cap M$ is a normal p-complement in N and $N \cdot M/N$ is a normal p-complement in G/N.
- 2. Let G be a finite group. The probability that two elements of G commute equals to $\frac{c}{|G|}$, where c is the number of conjugacy classes.
- 3. Let A be an abelian subgroup of G (such that |G:A| is finite). Let $g \in G$ and $b \in N_G(A)$. Show that $\tau_{G \to A}(g)$ commutes with b, where $\tau_{G \to A}$ denotes the transfer homomorphism from G to A.
- 4. Let V be an infinite dimensional vector space over \mathbb{F}_p , which is the finite field of p > 2 elements. Let \langle , \rangle denote a skew-symmetric bilinear function from V^2 to \mathbb{F}_p (i.e $\langle u, v \rangle = \langle v, u \rangle$.). Assume further that if v is a vector in V such that $\langle v, u \rangle = 0$ for every $u \in V$, then v = 0. Let G be $\{(v, a) \mid v \in V \ a \in \mathbb{F}_p\}$. We define a binary operation on G:

$$(u,a)(v,b) \coloneqq (u+v,a+b+\langle u,v\rangle)$$

- (a) Determine Z(G).
- (b) Determine G'.

(The group G is called the infinite extraspecial p-group.)