AAL, Ex. 6.

- 1. (a) Prove that A_n is generated by all of its 3-cycles.
 - (b) Prove that S_n is generated by (1,2) and $(1,2,\ldots,n)$
 - (c*) Prove that if m < n, then S_n is generated by (1, 2, ..., m) and (1, 2, ..., n) unless n and m are odd. In this case these two elements generate A_n .
- 2. Prove that $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ generate $SL(2, \mathbb{Z})$
- 3. Let G be an abelian group.
 - (a) Prove: a subgroup $H \leq G$ is maximal if and only if |G:H| is a prime number.
 - (b) Suppose G is multiplicatively written. Prove: $\phi(G) = \cap G^p$ with p ranging over the set of prime numbers.
- 4. Let G be a finite group. Prove: G is nilpotent if and only if each subgroup of G is subnormal (A subgroup H is subnormal iff. there exists k and $H \leq N_1 \leq N_2 \leq \ldots \leq N_k = G$).
- 5. Let G be a finite p-group and $\phi(G)$ the Frattini subgroup of G. We know that $G/\phi(G)$ is isomorphic to (the vector space) C_p^d for some positive integer d.
 - (a) Verify that there is a natural homomorphism from Aut(G) to $Aut(G/\phi(G))$.
 - (b) Prove that the order of the kernel of this homomorphism divides $|\phi(G)|^d$.
- 6. What is $\phi(\mathbb{Z})$?
- 7. What is $\phi(GL(3,\mathbb{Q}))$?